

TABLE OF CONTENTS

System Architecture. i

Language Reference. iii

labels. iii

add Instruction. iii

cmp Instruction. iv

dec Instruction. v

jmp/jne/jeq/jgt/jlt
Instructions. v

mov Instruction. vi

not Instruction. vii

out Instruction. vii

ret Instruction. viii

sub Instruction. ix

Example Program #1. x

Example Program #2. x

Example Program #3. x

Example Program #4. xi

i

The AC-16 is a state-of-the-art Programmable Computer capable of
managing up to four other devices via the output pins, named O0
through O3. All of the outputs are set by default in the off position
when the computer is turned on or reset. It has four built-in signed
16-bit registers that can be used for any purpose, named V0 through
V3. They are also called variables in this reference manual and they
are capable of storing integer values between -32,768 and 32,767.

Some kitchen parts offer support for reading the number of
actions they have performed, such as ingredient gates, assemblers and
robotic arms. The number of actions they have performed since they
were started can be retrieved by reading the variables I0 to I3. I0
will read the number of performed actions for the device connected to
O0, I1 to O1, and so on. Parts that do not support reading this value
(like for example conveyor belts) will always return 0.

The program memory of the computer can contain up to 32 lines of
code written in the AC Assembly Language. The entire program is
executed exactly 30 times per second, making it easy to program
routines that require precise timing. And speaking of timing, by
accessing the special read-only register TT you can access the
current time of the day, in 24 hours format. So, if the current time
is 3: 45 p. m. , the TT register will contain the 16-bit integer 1545.

There is a set of four special, read-only registers that will be
automatically populated with information coming from the built-in
order reader. Each one of these registers will contain a number
greater than 0 if at least a new order of the specified type has
arrived in the current 33 milliseconds tick and 0 otherwise. The
number dictates how many new orders of that type have been received
in the current 33 milliseconds tick. It can be referenced in AC
Assembly Language instructions as R0 to R3.

The built-in order readers can also distinguish between orders

SYSTEM ARCHITECTURE

ii

R for orders coming from the restaurant.

T for orders coming from the take-out area.

D for orders coming from the drive-thru window.

EXAMPLES

Built-in Order Reader R2 set to detect Cheeseburgers.

Variable R2R will contain the number of Cheeseburgers ordered from the

restaurant.

Variable R2T will contain the number of Cheeseburgers ordered from the take-

out area.

Variable R2D will contain the number of Cheeseburgers ordered from the

drive-thru window.

Variable R2 will contain the total number of Cheeseburgers ordered in the

current 33 milliseconds tick.

R2 will, therefore, contain the sum of R2R + R2T + R2D.

coming from different sources, such as a drive-thru window or
customers ordering take-out food. For that purpose you can add the
following letters as suffixes to the R0 to R3 variables:

iii

LANGUAGE REFERENCE

Labels are named locations in the code that can be used to
change the flow of execution via the jump (jmp/jne/jeq/jgt/jlt)
instructions. They can only contain alphabetic characters and
need to have between 1 and 10 characters in length followed by a
colon.

EXAMPLES

ADD INSTRUCTION

The add instruction adds two values and stores the result
in the variable specified in the third parameter. Remember,
registers are 16-bit, so the result has to be in the range
-32768 to 32767 to prevent errors.

SYNTAX

add <operand1> <operand2> <operand3>

<operand1> can be a variable or an integer value.

<operand2> can be a variable or an integer value.

<operand3> has to be a variable.

loopagain:

belton:

endprogram:

LABELS

iv

EXAMPLES

add V1 15 V2

add V0 V1 V0

The cmp instruction compares two values and sets the
comparison register to either -1, 0 or 1. If the first value is
smaller than the second one, it will be set to -1. If they are
equal, it will be set to 0. If the first value is greater than
the second one, it will be set to 1. The result can then be used
to conditionally jump to a different part of the code using the
jne/jeq/jlt/ instructions.

SYNTAX

cmp <operand1> <operand2>

<operand1> can be a variable or an integer value.

<operand2> can be a variable or an integer value.

cmp V1 30

cmp V1 V3

EXAMPLES

CMP INSTRUCTION

v

SYNTAX

dec <operand1>

<operand1> has to be a variable.

EXAMPLES

dec V0

All of these instructions jump to the specified label. jne
stands for “jump if not equal”, jeq stands for “jump if equal”,
jlt stands for “jump if less than” and jgt stands for “jump if
greater than”. They will jump to the specified label if the
result of the last comparison to be done using the cmp
instruction matches the result in the name of the instruction.
For example, running a jne instruction after a comparison will
make it jump to the specified label only if said comparison
determined the parameters were not equal, a jgt instruction will

DEC INSTRUCTION

JMP/JNE/JEQ/JGT/JLT INSTRUCTIONS

The dec instruction will decrement the specified variable
by one, but it will never allow it to reach negative numbers, so
it will automatically stop at 0. It is particularly useful to
implement timers.

dec V3

vi

SYNTAX

EXAMPLES

jne endprogram

jlt loopagain

The mov instruction copies a value into the specified
variable.

SYNTAX

mov <operand1> <operand2>

<operand1> can be a variable or an integer value.

<operand2> has to be a variable.

jmp <operand1>

jne <operand1>

jeq <operand1>

jlt <operand1>

jgt <operand1>

<operand1> has to be a label.

MOV INSTRUCTION

only jump if the first parameter in the comparison was greater
than the second one and so on. The jmp instruction will always
(unconditionally) jump to the specified label.

vii

EXAMPLES

mov 30 V2

mov V1 V2

The not instruction simply toggles the value of a variable.
If it was 0, it will become 1. Otherwise, it will become 0.

SYNTAX

not <operand1>

<operand1> has to be a variable.

EXAMPLES

not V1

not V3

NOT INSTRUCTION

OUT INSTRUCTION

The out instruction commands the device connected to the
specified output to be turned on or off. If the second operand
is 0, it will be turned off. Any other value will cause the
output to be toggled to the on position.

viii

SYNTAX

out <operand1> <operand2>

<operand1> has to be an output.

<operand2> can be a variable or an integer value. 0 means off,

anything else means on.

EXAMPLES

out O2 1

out O2 V3

RET INSTRUCTION

The ret (means return) instruction finishes the execution
of code for this 33 milliseconds cycle. It has the same meaning
as jumping to a label placed right on the last line of code. It
has no operands.

SYNTAX

ret

EXAMPLES

ret

ix

SUB INSTRUCTION

The sub instruction calculates the difference between two
values and stores the result in the variable specified in the
third parameter. Remember, registers are 16-bit, so the result
has to be in the range -32768 to 32767 to prevent errors.
Basically: it will do “operand1 - operand2” and store the result
in the variable specified in operand3.

SYNTAX

sub <operand1> <operand2> <operand3>

<operand1> can be a variable or an integer value.

<operand2> can be a variable or an integer value.

<operand3> has to be a variable.

EXAMPLES

sub V1 15 V1

sub V2 V3 V0

x

EXAMPLE PROGRAM #1

add 1 V0 V0

cmp 30 V0

jne endprogram

mov 0 V0

not V1

out O1 V1

endprogram:

EXAMPLE PROGRAM #2

add V0 R0 V0

cmp V0 5

jlt endprogram

out O2 1

endprogram:

This example program turns the device connected to O1 on for one
second, off for one second and so on.

EXAMPLE PROGRAM #3

This example program keeps the device connected to O0 on for 5

This example program turns on the device connected to O2 after 5
orders have arrived.

xi

prewarm:

cmp V1 1

jeq alrdywarm

add 120 V0 V0

mov 1 V1

alrdywarm:

cmp R0 1

jne nonew

add 150 V0 V0

nonew:

cmp V0 0

jlt timerended

sub V0 1 V0

out O0 1

ret

timerended:

out O0 0

EXAMPLE PROGRAM #4

This complex example program will read from two different order
reading modules (R0 and R1) and will handle outputs O0, O1 and O2.
The goal of the program is to turn O0 and O1 on for three seconds
whenever a new order arrives to either R0 or R1 but only turn on O2
when a new order arrives to R1. A good use case for this program is

seconds for every new order that arrives. A good use case for this
program is to make a dispenser produce one ingredient for every order
that arrives. Note that this program will also prewarm the device for
4 seconds on startup, so ingredients are delivered almost immediately
after the order arrives, saving precious time for your customers! A
standard order reader can' t do that, can it?

xii

prewarm:

cmp V2 1

jeq checkorder

add V0 60 V0

add V1 60 V1

mov 1 V2

checkorder:

cmp R0 1

jeq addtime

cmp R1 1

jeq addtimes

main:

out O0 V0

out O1 V0

out O2 V1

dec V0

dec V1

ret

addtimes:

add V1 90 V1

addtime:

add V0 90 V0

jmp main

to make R0 handle plain burgers and R1, cheeseburgers while O0 is
connected to a raw patty dispenser, O1 to a burger bun dispenser and
O2 to a cheese dispenser. It also prewarms the dispensers for two
seconds on startup.

